

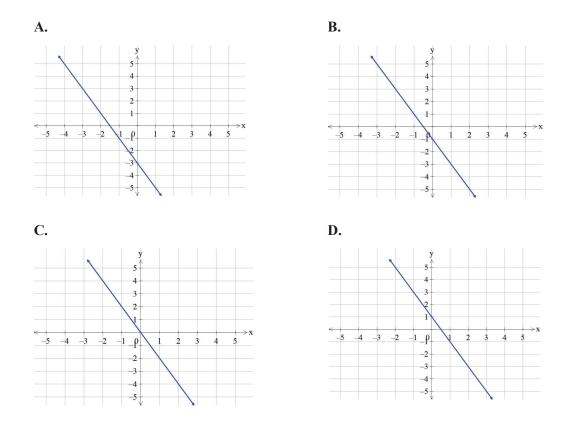
Name:					
NESA nur	nber:				
Teacher:	JH	MN	MA	GS	

ASCHAM SCHOOL

2022 YEAR 12 TRIAL EXAMINATION

Mathematics Extension 1

Friday 22nd July 2022


General	 Reading time – 10 minutes 			
Instructions	 Working time – 2 hours 			
	Write using black non-erasable penCalculators approved by NESA may be used			
	 A reference sheet is provided 			
Total marks:	Section I - 10 marks (pages 2 – 5)			
70	 Use the multiple-choice answer sheet for Questions 1-10. 			
	 Allow about 15 minutes for this section 			
	Section II - 60 marks (pages 6 – 11)			
	 Attempt Questions 11–14, each worth 15 marks 			
	 Allow about 1 hour and 45 minutes for this section 			
	 Show relevant mathematical reasoning and/ or calculations for 			
	questions in this section			
	 Start a new booklet for each question 			
r				
RESULT:				
/70	%			

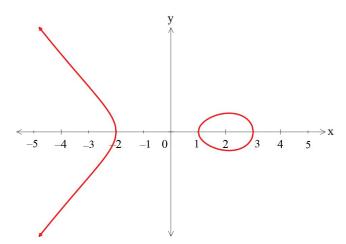
Section I

10 marks Attempt questions 1 - 10 Allow about 15 minutes for this section

Use the multiple-choice answer sheet for Questions 1 - 10

1. What is the graph of the function which has parametric equation $x = -\frac{p}{2} - 1$, y = p + 1?

- 2. Consider the two non-zero vectors, \underline{u} and \underline{v} , with the following properties:
 - y = ku, where k is a constant and
 - $u \cdot v < 0$


Which of the following statements is true?

- A. $u \perp v$
- C. $u \parallel y$ but in the opposite direction
- **B.** $u \parallel v$ in the same direction
- **D.** The angle between the vectors \underline{u} and \underline{y} is acute

3. Which of the following is equivalent to $\int \frac{1-2x}{\sqrt{2x+1}} dx$, given the substitution $x = \frac{1}{2}(u-1)$?

A.
$$\int \frac{2-u}{\sqrt{u}} du$$
B.
$$2\int \frac{2-u}{\sqrt{u}} du$$
C.
$$-\frac{1}{2} \int \frac{u}{\sqrt{u}} du$$
D.
$$\int \frac{2-u}{2\sqrt{u}} du$$

4. Given the graph of $y^2 = f(x)$, which of the following is the possible equation of y = f(x)?

A.
$$y = -(x+2)(x-1)(x-3)$$

B. $y = (x+2)(x-1)(x-3)$

C. $y = -(x-3)(x-1)(x+2)^2$ D. y = (3-x)(x+1)(x+2)

5. Which of the following is equal to
$$\cos^2\left(\frac{\pi}{4} - x\right) - \sin^2\left(\frac{\pi}{4} - x\right)$$
?

A. 1 **B.** $\sin 2x$

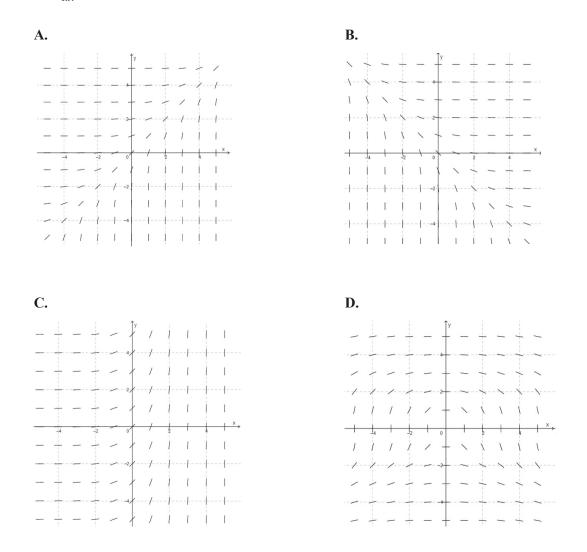
C. $\cos 2x$ D. $\sin x$

6. What are the domain and range of $y = 2\cos^{-1}(\sin x)$?

A.
$$x \in \left[-\frac{\pi}{2}, \frac{\pi}{2}\right], y \in \left[0, \frac{\pi}{2}\right]$$

B. $x \in \left(-\frac{\pi}{2}, \frac{\pi}{2}\right), y \in \left[0, 2\pi\right]$
C. $x \in \left(-\infty, +\infty\right), y \in \left[0, 2\pi\right]$
D. $x \in \left(-\infty, +\infty\right), y \in \left[0, \pi\right]$

7. From a standard deck of cards, a card is drawn 20 times, with replacement. What is the probability that a red card is drawn exactly 15 times?


A.
$$\frac{{}^{20}C_5}{2^5}$$
 B. ${}^{20}C_{15}\left(\frac{1}{2}\right)^{15}$

C.
$$\binom{20}{5} \left(\frac{1}{2}\right)^{-20}$$
 D. $\frac{{}^{20}C_{15}}{2^{20}}$

- 8. What is the equation of $y = f^{-1}(x)$ if $y = x^2 2x 2$ where $x \ge 1$?
 - **A.** $y = 1 \pm \sqrt{x+3}$ **B.** $y = 1 + \sqrt{x-3}$

C.
$$y = 1 - \sqrt{x+3}$$
 D. $y = 1 + \sqrt{x+3}$

9. Which of the following best represents the direction field for the differential equation $\frac{dy}{dx} = e^{x-y}?$

10. A polynomial $P(x) = a_n x^n + a_{n-1} x^{n-1} + ... + a_1 x + a_0$ has real roots at x_1 , x_2 and x_3 , which are all **distinct** values of x. Given that $P'(x_1) = 0$, $P'(x_2) = P''(x_2) = 0$ and $P'(x_3) = P''(x_3) = P'''(x_3) = 0$, what is the lowest possible degree of P(x)?

A.
$$n = 9$$
 B. $n = 7$

C.
$$n = 6$$
 D. $n = 3$

End of Multiple-Choice Section

Section II

60 marks Attempt questions 11 - 14 Allow about 1 hour and 45 minutes for this section

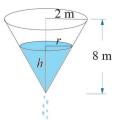
Answer each question in the appropriate writing booklet. Extra writing booklets are available.

For questions in Section II, your responses should include relevant mathematical reasoning and/ or calculations.

Question 11 (15 marks) Begin a new writing booklet

- (a) Let $P(x) = 2x^3 + rx^2 + x 3$ and $D(x) = x^2 + 6x 4$ have the same remainder when [2] divided by x+1. Find r.
- **(b)** Consider the vectors $\overrightarrow{OP} = -2i + j$ and $\overrightarrow{OQ} = 4i 3j$.
 - (i) Find the vector $u = \overline{PQ}$. [1]
 - (ii) Given that y = -i + 2j, find $y \cdot y$. [1]
 - (iii) Find $proj_{u} y$. [2]
- (c) What is the number of possible arrangements of the letters in the word LOGARITHMS, if 'G' [2] is next to 'R'?
- (d) Solve $\sin 2x = \cos x$ for $0 \le x \le 180^{\circ}$. [2]
- (e) (i) Write down the expansion of $(1-x)^6$. [1]

(ii) Hence, find the term in
$$x^2$$
 in the expansion $(2x-1)^2(1-x)^6$. [2]


(f) Evaluate exactly
$$\cos^{-1}\left(\sin\frac{4\pi}{3}\right)$$
. [2]

End of Question 11

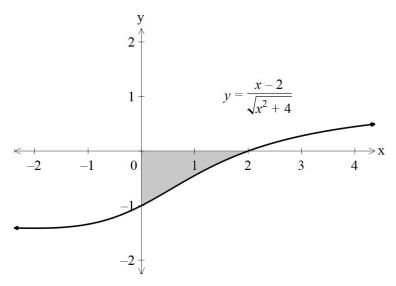
Question 12 (15 marks) Begin a new writing booklet

(a) Solve the differential equation
$$\frac{1}{1+x^2}\frac{dy}{dx} = \frac{x}{y}$$
 given that $y = -1$ when $x = 0$. [3]

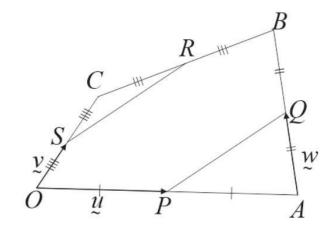
- (b) (i) Express $\cos x \sqrt{3} \sin x$ in the form $R \cos(x + \alpha)$, where α is an acute angle. [2]
 - (ii) Hence, solve $\cos x \sqrt{3} \sin x = 1$ for $-\pi \le x \le \pi$. [2]
- (c) A box contains 16 red, 10 blue and 12 yellow balls. Use the pigeonhole principle to find the [2] minimum number of balls to be drawn from the box to ensure 9 balls of same colour.
- (d) An inverted conical container is 8 m deep and has the radius of the base 2 m. Water is leaking from the container at a constant rate of $\frac{dV}{dt} = 0.1 \text{ m/h}$, where V is the volume of the water in the container. Assume the container is full initially.

- (i) Show that $V = \frac{\pi}{48}h^3$, where *h* is the height of the remaining water in the container. [1]
- (ii) Hence, find the height of water in the container when $\frac{dh}{dt} = 0.02 \text{ m/h}$, correct to two [2] decimal places.

(e) (i) Show that
$$\frac{d}{dx}(x\tan^{-1}x) = \tan^{-1}x + \frac{x}{1+x^2}$$
. [1]


(ii) Hence, evaluate exactly $\int_0^{\sqrt{3}} \tan^{-1} x \, dx$. [2]

End of Question 12


Question 13 (15 marks) Begin a new writing booklet

(a) The region between the curve $y = \frac{x-2}{\sqrt{x^2+4}}$ and y = 0, from x = 0 to x = 2, has been rotated [2]

about the x - axis as per the diagram below. Find the volume of a solid of revolution formed, correct to four significant figures.

(b) Consider the diagram below where OABC is a quadrilateral and P,Q,R and S are the midpoints of the intervals OA, AB, BC and CO, respectively.

Let $\overrightarrow{OP} = \underline{u}$, $\overrightarrow{OS} = \underline{v}$ and $\overrightarrow{AQ} = \underline{w}$. Prove that $\overrightarrow{PQ} = \overrightarrow{SR}$.

Question 13 continues on the next page...

[3]

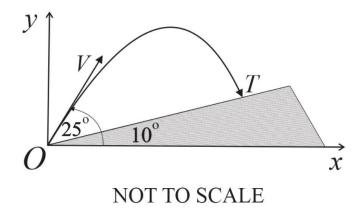
- (c) Use mathematical induction to prove that $3^{2n+1} + 2^{n-1}$ is divisible by 7, for all positive [3] integers n.
- (d) In the first half of 2022, 66% of all passengers departing from Sydney airport travelled [3] internationally. A survey of 500 randomly selected people on the airport was conducted.
 Assuming that the sampling distribution of proportions p̂ is approximately normally distributed, estimate the probability that the percentage of international travellers in the sample lies between 60% and 70%.

(e) (i) Show that
$$\frac{1-\cos 2x}{\sin 2x} + \frac{\sin 2x}{1+\cos 2x} = 2\tan x$$
. [2]

(ii) Hence, show that
$$\tan \frac{\pi}{12} = 2 - \sqrt{3}$$
. [2]

End of Question 13

Question 14 (15 marks) Begin a new writing booklet


- (a) After 100 snakes were released on an island on 1st January 2009 to control the population P_1 of 4000 cane toads, the number of cane toads started to decrease at a rate $\frac{dP_1}{dt} = -k(P_1 - 20)$ while the population of snakes, P_2 , was changing according to $\frac{dP_2}{dt} = 0.0005P_2(500 - P_2)$.
 - (i) Given that $P_1 = 20 + 3980e^{-kt}$ satisfies the differential equation $\frac{dP_1}{dt} = -k(P_1 20)$ and [1]

that there was 3119 cane toads left on the island after one year, show that k = 0.25 correct to two decimal places.

- (ii) Given that $\frac{1}{0.0005P_2(500-P_2)} = 4\left(\frac{1}{P_2} + \frac{1}{500-P_2}\right)$ show that the equation of the [3] population P_2 of snakes is given by $P_2 = \frac{500}{1+4e^{-0.25t}}$.
- (iii) Assuming that $P_1 = 20 + 3980e^{-0.25t}$, in what year will the population of snakes exceed [2] the population of cane toads?

Question 14 continues on the next page...

(b) The diagram shows a road OT that makes an angle of 10° with the horizontal.

A projectile is fired from O at an angle of 25° to the horizontal, with initial velocity V = 20 m/s. It hits a target at T.

Assume the acceleration due to gravity is 10 m/s^2 .

- (i) Find the time taken to hit the target. [4]
 (ii) Find the distance *OT*. Give your answer correct to two decimal places. [2]
- (c) Show that the function $y = e^{ax} \sin bx$ satisfies the equation $y'' 2ay' + (a^2 + b^2)y = 0$. [3]

End of the Examination

2	0.00	0.01	0.02	0.03	0.04	0.05	0.06	0.07	0.08	0.09
0.0	0.5000	0.5040	0.5080	0.5120	0.5160	0.5199	0.5239	0.5279	0.5319	0.5359
0.1	0.5398	0.5438	0.5478	0.5517	0.5557	0.5596	0.5636	0.5675	0.5714	0.5753
0.2	0.5793	0.5832	0.5871	0.5910	0.5948	0.5987	0.6026	0.6064	0.6103	0.6141
0.3	0.6179	0.6217	0.6255	0.6293	0.6331	0.6368	0.6406	0.6443	0.6480	0.6517
0.4	0.6554	0.6591	0.6628	0.6664	0.6700	0.6736	0.6772	0.6808	0.6844	0.6879
0.5	0.6915	0.6950	0.6985	0.7019	0.7054	0.7088	0.7123	0.7157	0.7190	0.7224
0.6	0.7257	0.7291	0.7324	0.7357	0.7389	0.7422	0.7454	0.7486	0.7517	0.7549
0.7	0.7580	0.7611	0.7642	0.7673	0.7704	0.7734	0.7764	0.7794	0.7823	0.7852
0.8	0.7881	0.7910	0.7939	0.7967	0.7995	0.8023	0.8051	0.8078	0.8106	0.8133
0.9	0.8159	0.8186	0.8212	0.8238	0.8264	0.8289	0.8315	0.8340	0.8365	0.8389
1.0	0.8413	0.8438	0.8461	0.8485	0.8508	0.8531	0.8554	0.8577	0.8599	0.8621
1.1	0.8643	0.8665	0.8686	0.8708	0.8729	0.8749	0.8770	0.8790	0.8810	0.8830
1.2	0.8849	0.8869	0.8888	0.8907	0.8925	0.8944	0.8962	0.8980	0.8997	0.9015
1.3	0.9032	0.9049	0.9066	0.9082	0.9099	0.9115	0.9131	0.9147	0.9162	0.9177
1.4	0.9192	0.9207	0.9222	0.9236	0.9251	0.9265	0.9279	0.9292	0.9306	0.9319
1.5	0.9332	0.9345	0.9357	0.9370	0.9382	0.9394	0.9406	0.9418	0.9429	0.9441
1.6	0.9452	0.9463	0.9474	0.9484	0.9495	0.9505	0.9515	0.9525	0.9535	0.9545
1.7	0.9554	0.9564	0.9573	0.9582	0.9591	0.9599	0.9608	0.9616	0.9625	0.9633
1.8	0.9641	0.9649	0.9656	0.9664	0.9671	0.9678	0.9686	0.9693	0.9699	0.9706
1.9	0.9713	0.9719	0.9726	0.9732	0.9738	0.9744	0.9750	0.9756	0.9761	0.9767
2.0	0.9772	0.9778	0.9783	0.9788	0.9793	0.9798	0.9803	0.9808	0.9812	0.9817
2.1	0.9821	0.9826	0.9830	0.9834	0.9838	0.9842	0.9846	0.9850	0.9854	0.9857
2.2	0.9861	0.9864	0.9868	0.9871	0.9875	0.9878	0.9881	0.9884	0.9887	0.9890
2.3	0.9893	0.9896	0.9898	0.9901	0.9904	0.9906	0.9909	0.9911	0.9913	0.9916
2.4	0.9918	0.9920	0.9922	0.9925	0.9927	0.9929	0.9931	0.9932	0.9934	0.9936
2.5	0.9938	0.9940	0.9941	0.9943	0.9945	0.9946	0.9948	0.9949	0.9951	0.9952
2.6	0.9953	0.9955	0.9956	0.9957	0.9959	0.9960	0.9961	0.9962	0.9963	0.9964
2.7	0.9965	0.9966	0.9967	0.9968	0.9969	0.9970	0.9971	0.9972	0.9973	0.9974
2.8	0.9974	0.9975	0.9976	0.9977	0.9977	0.9978	0.9979	0.9979	0.9980	0.9981
2.9	0.9981	0.9982	0.9982	0.9983	0.9984	0.9984	0.9985	0.9985	0.9986	0.9986
3.0	0.9987	0.9987	0.9987	0.9988	0.9988	0.9989	0.9989	0.9989	0.9990	0.9990
3.1	0.9990	0.9991	0.9991	0.9991	0.9992	0.9992	0.9992	0.9992	0.9993	0.9993
3.2	0.9993	0.9993	0.9994	0.9994	0.9994	0.9994	0.9994	0.9995	0.9995	0.9995
3.3	0.9995	0.9995	0.9995	0.9996	0.9996	0.9996	0.9996	0.9996	0.9996	0.9997
3.4	0.9997	0.9997	0.9997	0.9997	0.9997	0.9997	0.9997	0.9997	0.9997	0.9998

Probability table for the standard normal distribution

2022 Y12 EXT 1 TRIAL SOLUTIONS

SECTION 6 y=2cos-1(sinx) 11 eg when p=2, x=-2, y=3 Domain and range of p=0 1×=-1 1y=1 Find the graph on which <u>y=cos'x D:[-1,1]</u> points (-2,3) and (-1,1) lie. .-. (B) · Domain and range fa y=2cos-1(sinx): or eliminate p and use the gradient and y-int. to ident. graph $\mathbf{D}: -1 \leq \mathbf{S}_1 \mathbf{h} \mathbf{x} \leq 1$ $\therefore \quad x \in (-\mathcal{P}_1 + \infty)$ 2) h+V= En means h and V ar pamillel vectors as since is in that range . h. V <0 means angle between for all 2. them is 180° -: in opp. direct. \mathbb{R} : $[2 \times 0, 2 \times \overline{11}] = [0, 2\overline{11}]$ - : (C) \cdot C D Bin (20,15) = 20 (5×(2)) × $\chi = \frac{1}{2}(\omega - 1)$ $\frac{1-2\infty}{\sqrt{2x+1}} dx$ $= 20 \zeta_{15} - \tau \left(\frac{1}{5}\right)$ $d_{3c} = \frac{1}{2} d_{13}$ 200,5 1-2× 2(4-1) 12x=1(1-1)+1 8 y=x2-2x-2 : x = y - 2y - 2 $\frac{x}{x} = \frac{y^{2}}{y^{2}} \cdot \frac{y+1-1-2}{y^{2}-3}$ - (D) 2-4 -: (y-1)² = > + 3 .: P(2,-2) P'(-7,7) $= y = 1 \pm 12 + 3 = y^{-1}(x) = 1 + 12x + 3$ 4 Check serves: x=-2, 1, 3 9 DE is in the form dy = f(x) 9(4) It has to be a cusic with neg. heading coeff. ... (A) - gradients will change vertically and hon'suntally $5 \cos^2\left(\frac{\pi}{4}, ->c\right) - \sin^2\left(\frac{\pi}{4}, ->c\right)$: hot C dy is always positive $= \cos\left[2\left(\frac{\pi}{4}-3c\right)\right]$ = c · s [] - 2 > - 2 = - 2 = - 2 = - 2 = - 2 = - 2 = - 2 = - 2 = - 2 = - 2 = - 2 = - 2 = inot B and D - A = $\cos \frac{\pi}{2} \cos 2i c + \sin \frac{\pi}{2} \sin i x$ 10 | P'(x,)=0 .: clouble thro at x=x, P"(x2)=0 - tripte zero at x=x3 = since -: (B) P" (X3)=0 .: quadr. 200 at x=X3 $\frac{h=2+3+4}{=9}$

SECTION II

QUESTION II	
a) $P(x) = \lambda x^3 + rx^2 + x - 3$	d) . 2 sinx cosx = cosx
$D(x) = x^2 + 6x - 4$	[2] Lrinx cosx - cosx = 0
$(-1)^2 + 6(-1) - 4$	(05x(25ihx-1)=0)
= -9	$\frac{1}{2} COSSC = O cr Sinsc = \frac{1}{2}$
P(-1) = -2 + r - 1 - 3	$- x = 90$ $\therefore x = 30$
= r-6	· x=30°,90°,1 5 0°
Since D(-1) = P(-1)	e)
r-6=-9	$(1-x)^{\prime} = (1+(-x))^{\prime}$
-·(=-3 [z]	$\begin{bmatrix} 2 \end{bmatrix} = {}^{6}C_{0} {}^{6}(-\infty)^{\circ} + {}^{6}C_{1} {}^{5}(-\infty)^{1}$
	+ ⁶ C ₂ 1 ⁴ (-) ² + ⁶ C ₃ 1 ³ (-) ³
5) OP =- 2i + j OQ = 4i - 3j	$+ {}^{6}C_{4} ^{2} (-x)^{4} + {}^{6}C_{5} ^{4} (-x)^{5}$
L) $\mu = PQ$	+ 'C _G 1' (-x)'
= PO + OQ	$= 1 - 6x + 15x^2 - 20x^3 + 15x^4 - 6x^4 + x^4$
$= -(\overline{OP}) + \overline{OQ}$	(1) $(2x-1)^2 = 4x^2 - 4x + 1$
= -(-2i + j) + 4i - 3j	The term in x ²
$= 2 \frac{1}{2} - \frac{1}{2} + 4 \frac{1}{2} - 3 \frac{1}{2}$	$=4x^{2}x1 - 4xx(-6x) + 1x15x^{2}$
- (i - 4 j [i]	$=43 \times 2 [2]$
$\frac{ii}{2} = \frac{i}{2} = i$	\$)
$= 6 \times (-1) + (-4) \times 2$	$\cos^{-1}(\sin \frac{4\pi}{3}) = \cos^{-1}(-\sin \frac{\pi}{3}) *$
= -14 [1]	$= \cos^{-1}\left(-\frac{\sqrt{3}}{2}\right) \ast \ast$
$\frac{iii}{\mu} pr \gamma_{\mu} = \frac{\mu}{\mu} \frac{\nu}{2} \mu$	$= \boxed{\overline{I} - \underline{I}}$ $= \underbrace{\underline{SII}}_{C}$
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	$=\frac{5\overline{ll}}{6}$ [2]
$\frac{-14}{(76^{2}+(4))^{2}} (6\dot{c} - 4\dot{j})$	* pulc
$\frac{-\frac{14}{5}}{6(-4j)}$	
30	
$= \frac{-84}{52} \sim + \frac{56}{52} \downarrow$	4 <u>m</u> 3
$\frac{21}{13} \stackrel{!}{\sim} + \frac{14}{13} \stackrel{!}{\sim} \frac{12}{2}$	* *
	$0 \leq \cos^{-1}\left(-\frac{V_3}{2}\right) \leq TT$
c) 10 letters	.: cos'(-=) is in 2nd quadr
$\frac{GR}{RG} = \frac{GR}{2}$	with $HL < = \frac{\Pi}{L}$
	°
Number of Grrang. = 9!x2!	

~g= 1. ~ = 725760

QUESTION 12	
$\alpha \frac{1}{1+x^2} \frac{dy}{dx} = \frac{x}{4} + x = 0  y = -1$	
$[3] \cdot y dy = x (1+x^2) dx / \int$	
$\int y  dy = \int (x + x^3)  dx$	
$\frac{y^{2}}{2} = \frac{x^{2}}{2} + \frac{x^{4}}{4} + C$	ý —
$\frac{2}{x^2 + \frac{2}{x^4} + C_1}$	$() \Delta ABC \parallel \Delta ADE = \sqrt{V_{-\frac{1}{3}} \Pi r^2 h}$
$-: M = \frac{1}{2} \sqrt{2c^{2} + \frac{2c^{5}}{2} + C_{1}}$	$(E_{g}mingmar) = \frac{1}{3}\overline{n}\left(\frac{b}{4}\right)^{2}h$
Given that y=-1 when sc=0	$\frac{1}{r} = \frac{8}{h} = \frac{1}{48}h^3$
$y = -\sqrt{2c^{2}+\frac{2c}{2}}+c_{1}$	
$-1 = -\sqrt{\omega + \frac{\omega}{2} + \zeta_1}  z = -\zeta_1 = 1$	
$-1. y = -\sqrt{x^2 + \frac{x^4}{2} + 1}$	$\frac{dV}{dt} = \frac{dV}{dt} \times \frac{dt}{dt}$
b)	$0.1 = \frac{d}{dL} \left( \frac{d}{48} h^3 \right) \times 0.02$
$i)\cos x - \sqrt{3}\sin x = R\cos(x + x)$	$=\frac{\pi}{16}h^2 \times 0.02$
$\cos x - 13 \sin x = R\cos x \cos x - Psinx sing$	$\frac{1}{16}h^2 = 5$
$\therefore \mathbb{R} \cos \alpha =  /^{2}$	$h^2 = \frac{80}{17}$
+ $Psi'n\alpha = V_3/^2$	-: h = 5.0462
R2(cos2x+642x) = 4	= 5 05m [2]
$R^2 = 4$	c) il y=sctan'sc
-: R=2 as R>0	Let u=>c, v=tan x
$\frac{1}{2} = 2 \text{ as } k > 0$ Since $\cos x = \frac{1}{2} > 0 \text{ and}$	Then $u' = 1$ , $v' = \frac{1}{1 + 2c^2}$
	Then $h' = 1 + V' = \frac{1}{1 + 3c^2}$
Since $\cos \alpha = \frac{1}{2}$ to and	Then $u' = 1$ , $v' = \frac{1}{1 + 2^2}$ $\frac{d}{dx}(x \tan x) = vu' + uv'$
Since $\cos x = \frac{1}{2}$ to and $\sin x = \frac{5}{2}$ to	Then $u' = 1$ , $v' = \frac{1}{1 + 2c^2}$ $\frac{d}{dx} (x \tan x) = vu' + uv'$ $= \tan x + \frac{x}{1 + x^2} [1]$
Since $\cos x = \frac{1}{2}$ 70 and $\sin x = \frac{\sqrt{3}}{2}$ 70 $\propto \sin x + \frac{\sqrt{3}}{2}$ $\propto \sin x + \frac{\sqrt{3}}{2}$ $\propto -\frac{\sqrt{3}}{3}$ $\therefore \cos x - \sqrt{3} \sin x = 2(x + \frac{\pi}{3})[2]$	Then $u' = 1$ , $v' = \frac{1}{1 + 2c^2}$ $\frac{d}{dx} (x \tan x) = vu' + uv'$ $= \tan x + x$ , $\int dx$
Since $\cos x = \frac{1}{2}$ 70 and $\sin x = \frac{\sqrt{3}}{2}$ 70 $\propto \sin x + \frac{\sqrt{3}}{2}$ $\propto \sin x + \frac{\sqrt{3}}{2}$ $\propto -\frac{\sqrt{3}}{3}$ $\therefore \cos x - \sqrt{3} \sin x = 2(x + \frac{\sqrt{3}}{3})[2]$ ii) $\cos x - \sqrt{3} \sin x = 1$ $-\sqrt{1} \le x \le \sqrt{3}$	Then $u' = 1$ , $v' = \frac{1}{1 + x^2}$ $\frac{d}{dx} (x \tan x) = vu' + uv'$ $= \tan x + \frac{x}{1 + x^2} (1)$ $\frac{1}{\tan^{-1}x} = \frac{d}{dx} (x \tan x) - \frac{x}{1 + x^2} / \int$
$\frac{\sin (\alpha \cos \alpha = \frac{1}{2} \ 70 \ \text{and}}{\sin \alpha = \frac{\pi}{2} \ 70}$ $\propto is in 1st gmadr and$ $\alpha = \frac{\pi}{3}$ $\therefore \cos x - 15 \sin x = 2 (x + \frac{\pi}{3})[2]$ $ii) \cos x - 75 \sin x = 1  \text{.} T \le x \le T$ $\therefore 2\cos(x + \frac{\pi}{3}) = 1$	Then $u' = 1$ , $v' = \frac{1}{1 + 2^2}$ $\frac{d}{dx} (x \tan x) = vu' + uv'$ $= \tan x + \frac{x}{1 + x^2} (1)$ $\frac{1}{\tan^{-1}x} = \frac{d}{dx} (x \tan x) - \frac{x}{1 + x^2} / \int$ $\therefore \int \tan^{-1}x  dx = x \tan^{-1}x - \int \frac{x}{1 + x^2}  dx$
$\frac{5in(e  \cos x = \frac{1}{2}  70  and}{\sin x = \frac{5}{2}  70}$ $\frac{\sin x = \frac{5}{2}  70}{\cos x = \frac{5}{2}  70}$ $\frac{\cos x = \frac{5}{3}}{\cos x = 2  \cos x = 1  \sin x = 2  (x = \frac{1}{3}) \begin{bmatrix} z \end{bmatrix}}$ $\frac{ii}{2i} \cos x = \frac{1}{3} \sin x = 1  \text{If } z = \frac{1}{3} \begin{bmatrix} z \\ z = \frac{1}{3} \end{bmatrix}$ $\frac{ii}{2i} \cos (x = \frac{1}{3}) = 1$ $\frac{1}{2i} \cos (x = \frac{1}{3}) = \frac{1}{2} = \frac{21}{3}  z = \frac{1}{3} = \frac{1}{3}$	Then $u' = 1$ , $v' = \frac{1}{1 + 2^2}$ $\frac{d}{dx} (x \tan x) = vu' + uv'$ $= \tan x + \frac{x}{1 + x^2} (1)$ $\frac{1}{\tan^{-1}x} = \frac{d}{dx} (x \tan x) - \frac{x}{1 + x^2} / \int$ $\therefore \int \tan^{-1}x  dx = x \tan^{-1}x - \int \frac{x}{1 + x^2}  dx$
$\frac{5in(e  \cos x = \frac{1}{2}  70  and}{\sin x = \frac{5}{2}  70}$ $\propto is in  1st  gmadr  and$ $\propto = \frac{\pi}{3}$ $\therefore \cos x - 1s  sin x = 2  (x + \frac{\pi}{3}) \begin{bmatrix} z \end{bmatrix}$ $ii)  \cos x - 1s  sin x = 1  -\pi \leq x \leq \pi$ $\therefore 2\cos(x + \frac{\pi}{3}) = 1$ $\therefore 2\cos(x + \frac{\pi}{3}) = \frac{1}{2}  -\frac{2\pi}{3} \leq x + \frac{\pi}{3} \leq \frac{4\pi}{3}$ $Sin(e  \cos(x + \frac{\pi}{3}) > 0  Hell \leq = \frac{\pi}{3}$	Then $u' = 1$ , $v' = \frac{1}{1 + x^2}$ $\frac{d}{dx} (x \tan x) = vu' + uv'$ $= \tan x + \frac{x}{1 + x^2} (1)$ $\frac{1}{\tan^{-1}x} = \frac{d}{dx} (x \tan x) - \frac{x}{1 + x^2} / \int$
$\frac{5in(e  \cos x = \frac{1}{2}  70  and}{\sin x = \frac{5}{2}  70}$ $\frac{\sin x = \frac{5}{2}  70}{\cos x = \frac{5}{2}  70}$ $\frac{\cos x = \frac{5}{3}}{\cos x = 2  \cos x = 1  \sin x = 2  (x = \frac{1}{3}) \begin{bmatrix} z \end{bmatrix}}$ $\frac{ii}{2i} \cos x = \frac{1}{3} \sin x = 1  \text{If } z = \frac{1}{3} \begin{bmatrix} z \\ z = \frac{1}{3} \end{bmatrix}$ $\frac{ii}{2i} \cos (x = \frac{1}{3}) = 1$ $\frac{1}{2i} \cos (x = \frac{1}{3}) = \frac{1}{2} = \frac{21}{3}  z = \frac{1}{3} = \frac{1}{3}$	Then $u' = 1$ , $v' = \frac{1}{1 + 2c^2}$ $\frac{d}{dx} (x \tan^2 x) = vu' + uv'$ $= \tan^2 x + \frac{x}{1 + x^2} (1)$ $= \tan^{-1} x = \frac{d}{dx} (x \tan^2 x) - \frac{x}{1 + x^2} / \int$ $\therefore \int \tan^{-1} x  dx = x + \tan^{-1} x - \int \frac{x}{1 + x^2}  dx$ $= x \tan^{-1} x - \frac{1}{2} \int \frac{2x}{1 + x^2}  dx$ $= x + \tan^{-1} x - \frac{1}{2} \int \frac{2x}{1 + x^2}  dx$
$\frac{\int in(e  \cos x = \frac{1}{2}  70  and}{\sin x = \frac{\pi}{2}  70}$ $\propto is in  1st  gmadr  and$ $\propto = \frac{\pi}{3}$ $\therefore \cos x - 1s  \sin x = 2  (x + \frac{\pi}{3})[z]$ $ii)  \cos x - 1s  \sin x = 1  -\pi \in x \in \pi$ $\therefore 2\cos(x + \frac{\pi}{3}) = 1$ $\therefore 2\cos(x + \frac{\pi}{3}) = \frac{1}{2}  -\frac{2\pi}{3} \leq x + \frac{\pi}{3} \leq \frac{4\pi}{3}$ $\int in(e  \cos(x + \frac{\pi}{3}) > 0  \text{rel}(z = \frac{\pi}{3})$ $x + \frac{\pi}{3} = -\frac{\pi}{3}  \frac{\pi}{3}$	Then $u' = 1$ , $v' = \frac{1}{1 + 2c^2}$ $\frac{d}{dx} (x \tan^2 x) = vu' + uv'$ $= \tan^2 x + \frac{x}{1 + x^2} (1)$ $= \tan^{-1} x = \frac{d}{dx} (x \tan^2 x) - \frac{x}{1 + x^2} / \int$ $\therefore \int \tan^{-1} x  dx = x \tan^{-1} x - \int \frac{x}{1 + x^2}  dx$ $= x \tan^{-1} x - \frac{1}{2} \int \frac{2x}{1 + x^2}  dx$ $= x \tan^{-1} x - \frac{1}{2} \ln \left[ \frac{1}{1 + x^2} \right] + C$
$\frac{\text{Sinke } \cos x = \frac{1}{2} \ \text{70 and}}{\sin x = \frac{\pi}{2} \ \text{70}}$ $\frac{\text{a is in } 1\text{st gmadr and}}{\alpha = \frac{\pi}{3}}$ $\frac{\text{cosx} - \text{Fsinx} = \text{P}\left(x + \frac{\pi}{3}\right)[2]}{\text{il} \cos x - \text{Fsinx} = 1 \ -\pi \le x \le \pi}$ $\frac{\text{cos}(x + \frac{\pi}{3}) = 1}{\frac{1}{2} - \frac{2\pi}{3} \le x + \frac{\pi}{3} \le \frac{4\pi}{3}}$ $\frac{\text{Sinke } \cos(x + \frac{\pi}{3}) = 0 \ \text{rel}(x = \frac{\pi}{3})$	Then $u' = 1$ , $v' = \frac{1}{1 + 2c^2}$ $\frac{d}{dx} (x \tan x) = vu' + uv'$ $= \tan x + \frac{x}{1 + x^2} (1)$ $\frac{1}{tan^{-1}x} = \frac{d}{dx} (x \tan x) - \frac{x}{1 + x^2} / \int$ $\therefore \int \tan^{-1}x  dx = x + \tan^{-1}x - \int \frac{x}{1 + x^2}  dx$
$\frac{5in(e  \cos x = \frac{1}{2}  70  and}{\sin x = \frac{5}{2}  70}$ $\propto is in  1st gmadr  and$ $\propto = \frac{\pi}{3}$ $\therefore \cos x - 5 \sin x = 2  (x + \frac{\pi}{3}) \begin{bmatrix} z \end{bmatrix}$ $ii) \cos x - 5 \sin x = 1  -\pi \leq x \leq \pi$ $\therefore 2\cos (x + \frac{\pi}{3}) = 1$ $\therefore \cos (x + \frac{\pi}{3}) = 1$ $\Rightarrow \cos (x + \frac{\pi}{3}) = \frac{1}{2}  -\frac{2\pi}{3} \leq x + \frac{\pi}{3} \leq \frac{4\pi}{3}$ $Sin(e  \cos (x + \frac{\pi}{3}) > 0  H(z = \frac{\pi}{3})$ $x + \frac{\pi}{3} = -\frac{\pi}{3} \cdot \frac{\pi}{3}$ $x + \frac{\pi}{3} = -\frac{\pi}{3} \cdot \frac{\pi}{3}$ $x + \frac{\pi}{3} = -\frac{\pi}{3} \cdot \frac{\pi}{3}$ $(z)$	Then $u' = 1$ $v' = \frac{1}{1 + x^2}$ $\frac{d}{dx} (x \tan x) = Vu' + uv'$ $= \tan x + \frac{x}{1 + x^2} (1)$ $\tan^{-1}x = \frac{d}{dx} (x \tan x) - \frac{x}{1 + x^2} / \int$ $\therefore \int \tan^{-1}x  dx = x \tan^{-1}x - \int \frac{x}{1 + x^2}  dx$ $= x \tan^{-1}x - \frac{1}{2} \int \frac{2x}{1 + x^2}  dx$ $= x \tan^{-1}x - \frac{1}{2} \int \frac{2x}{1 + x^2}  dx$ $= x \tan^{-1}x - \frac{1}{2} \ln 1 + x^2 + C$ $= \left[x \tan^{-1}x - \frac{1}{2} \ln 1 + x^2\right] + C$ $= \left[x \tan^{-1}x - \frac{1}{2} \ln 1 + x^2\right] + C$
$\frac{5in(e  \cos 5x = \frac{1}{2}  70  and}{5in(e  \sin x = \frac{15}{2}  70}$ $\propto is in  1st gmadr  and$ $\propto = \frac{\pi}{3}$ $\therefore \cos x - 15 \sin x = 2  (x + \frac{\pi}{3})[z]$ $ii) \cos x - 15 \sin x = 1  -\pi \in x \in \pi$ $iii) \cos (x + \frac{\pi}{3}) = 1$ $\therefore 2\cos(x + \frac{\pi}{3}) = \frac{1}{2}  -\frac{2\pi}{3} \leq x + \frac{\pi}{3} \leq \frac{4\pi}{3}$ $Sin(e \cos(x + \frac{\pi}{3}) > 0  Hell < = \frac{\pi}{3}$ $\int \frac{\pi}{3}  x = -\frac{2\pi}{3}  i = \frac{\pi}{3}$ $i = \frac{\pi}{3}  x = -\frac{2\pi}{3}  i = \frac{\pi}{3}$ $i = \frac{\pi}{3}  x = -\frac{2\pi}{3}  i = \frac{\pi}{3}$ $i = \frac{\pi}{3}  x = -\frac{2\pi}{3}  i = \frac{\pi}{3}$ $i = \frac{\pi}{3}  x = -\frac{2\pi}{3}  i = \frac{\pi}{3}$ $i = \frac{\pi}{3}  x = -\frac{2\pi}{3}  i = \frac{\pi}{3}$ $i = \frac{\pi}{3}  x = -\frac{2\pi}{3}  i = \frac{\pi}{3}$ $i = \frac{\pi}{3}  x = -\frac{2\pi}{3}  i = \frac{\pi}{3}$ $i = \frac{\pi}{3}  x = -\frac{2\pi}{3}  i = \frac{\pi}{3}$ $i = \frac{\pi}{3}  x = -\frac{2\pi}{3}  i = \frac{\pi}{3}$	Then $u' = 1$ $v' = \frac{1}{1 + x^2}$ $\frac{d}{dx} (x \tan x) = Vu' + uv'$ $= \tan x + \frac{x}{1 + x^2} (1)$ $\tan^{-1}x = \frac{d}{dx} (x \tan x) - \frac{x}{1 + x^2} / \int$ $\therefore \int \tan^{-1}x  dx = x \tan^{-1}x - \int \frac{x}{1 + x^2}  dx$ $= x \tan^{-1}x - \frac{1}{2} \int \frac{2x}{1 + x^2}  dx$ $= x \tan^{-1}x - \frac{1}{2} \int \frac{2x}{1 + x^2}  dx$ $= x \tan^{-1}x - \frac{1}{2} \ln 1 + x^2 + C$ $= \left[x \tan^{-1}x - \frac{1}{2} \ln 1 + x^2\right] + C$ $= \left[x \tan^{-1}x - \frac{1}{2} \ln 1 + x^2\right] + C$
$\frac{5in(e  \cos x = \frac{1}{2}  70  and}{\sin x = \frac{5}{2}  70}$ $\frac{x  is  in  1st  gnadr  and}{x  = \frac{\pi}{3}}$ $\frac{z  \cos x - 5s  in  x = 2(x + \frac{\pi}{3})(z)}{(i) \cos x - 5s  in  x = 1}  -\pi \leq x \leq \pi$ $\frac{z  \cos (x + \frac{\pi}{3}) = 1}{z  -2\pi}$ $\frac{z  x + \frac{\pi}{3} \leq \frac{2\pi}{3}}{s  x + \frac{\pi}{3} \leq \frac{4\pi}{3}}$ $\frac{5in(a  \cos(x + \frac{\pi}{3}) > 0)  rd(z = \frac{\pi}{3})}{r  x + \frac{\pi}{3} = \frac{2\pi}{3}  i  x = \frac{2\pi}{3}  x = 2$	Then $u' = 1$ $v' = \frac{1}{1 + x^2}$ $\frac{d}{dx} (x \tan x) = vu' + uv'$ $= \tan x + \frac{x}{1+x^2} (1)$ $\tan^{-1}x = \frac{d}{dx} (x \tan x) - \frac{x}{1+x^2} / \int$ $\therefore \int \tan^{-1}x  dx = x + \tan^{-1}x - \int \frac{x}{1+x^2}  dx$ $= x + \tan^{-1}x - \frac{1}{2} \int \frac{2x}{1+x^2}  dx$ $= x + \tan^{-1}x - \frac{1}{2} \int \frac{2x}{1+x^2}  dx$ $= x + \tan^{-1}x - \frac{1}{2} \int \frac{1}{1+x^2}  dx$ $= \frac{1}{2} \tan^{-1}x - \frac{1}{2} \int \frac{1}{1+x^2}  dx$ $= \left[ x \tan^{-1}x - \frac{1}{2} \int \frac{1}{1+x^2}  dx - \frac{1}{1+x^2} \right]_{0}^{13}$ $= \left[ 15x + \frac{1}{3} - \frac{1}{2} \int \frac{1}$

QUESTION 15	
	Assume that P(k) is true. That is,
$\frac{\alpha(z)}{\sqrt{2}} = \lim_{z \to z} \frac{y^{2} dx}{2}$	
	2 K-1=712-3 ^{2k+1}
$= \widetilde{\Pi} \int \frac{(x-2)^2}{(\sqrt{x^2+4})^2} dx$	$3^{2k+1} + 2^{k-1} = 7p, p \text{ is an integer}$ $\therefore 2^{k-1} = 7p - 3^{2k+1}$ $\frac{2^{k}}{2} = 7p - 3^{2k+1}$
0,	$(1 - 2^{k} = 2(1 - 3^{2^{k+1}}) *$
$= \prod_{n} \int_{0}^{2} \frac{x^{2} 4x + 4}{x^{2} + 4} dx_{c}$	Prove that P(k+1) is true. That is
2	$3^{2(k+1)+1}$ (k+1)-1 = 79, 9 integer
$= \pi \int_{0}^{1} \frac{x^{2}+4}{x^{2}+4} - \frac{4x}{x^{2}+4} dx$	$\frac{3^{2(k+1)+1} (k+1)-1}{+2} = 7g_{1}g_{1}in + ger}{+2}$ $= 7g_{1}g_{1}in + ger}{+2}$ $= 7g_{1}g_{1}in + ger}{+2}$ $= 7g_{1}g_{1}in + ger}{+2}$
$= \prod \left( \left( 1 - 2 \frac{2x}{2x} \right) \right) dx$	$= 3^{2k+3} + 2^{k}$
$= \Pi \int_{O} \left( 1 - 2 \frac{2s_c}{s_c^2 + \zeta} \right) dx$	$= 3^{2k+3} + 2x 3^{2k+1}$
$= \widetilde{\mathbb{I}} \left[ x - 2 \ln  x^2 + 4  \right]^2$	= $9 \times 3^{2k+1} + 2 \times 7p - 2 \times 3^{2k+1}$
$= \widetilde{T} \left[ 2 - 2\ln 8 - 0 + 2\ln 4 \right]$	= 7×3 ^{2k+1} +7×2p = 7(3 ^{2k+1} +2p)
= 1.92801	= 7 (3 ^{2k+1} +2p)
= 1.928 (4 s. f.)	= 79,9 is an integer
	= RHS
PQ = PA + AQ	∴If P(k) is true, P(k+1) is also the
$\frac{b(i)}{PQ} = PA + AQ$ $= \frac{1}{2}OA + AQ$ $= \overline{OP} + AQ$	.: The proposition P(n) is true
= JP + AQ	by the principle of Month Ind.
	for all 10>0.
$\frac{\overline{SR} = \overline{SC} + \overline{CR}}{= \frac{1}{2}\overline{CC} + \frac{1}{2}\overline{CR}}$	d) Population : p=0.66 g=1-p =0.34
$= \frac{1}{2} \overrightarrow{OC} + \frac{1}{2} \overrightarrow{C} \overrightarrow{B}$	[3] Sample : p, Mp=p=0.66, N=500
$= \overrightarrow{OS} + \frac{1}{2} \left( \overrightarrow{CO} + \overrightarrow{OA} + \overrightarrow{AB} \right)$	$P(0.6 \le p \le 0.7)$
$= \chi + \frac{1}{2} \left( -2\chi + 2\mu + 2\chi \right)$	$= P\left(\begin{array}{c} 0.6 & -0.66 \\ \sqrt{0.66 \times 0.34} & 5 & 2 & 5 \\ \sqrt{0.66 \times 0.34} & 5 & 5 & \sqrt{0.66 \times 0.34} \end{array}\right)$
$= \underbrace{1}_{k} - \underbrace{1}_{k} + \underbrace{1}_{k} + \underbrace{1}_{k}$	500
<u> </u>	$= \left  \frac{2}{2.8322} \le \frac{2}{5} \le \frac{1}{8} \frac{8813}{8813} \right $
	= P (-2,83 5 2 5 4 89)
	=P(25189)-P(25-2.85)
c) let P(n) be the proposition	$=P(z \leq 1.8^{\circ}) - P(z \neq 2.83)$
$13$ that $3^{2n+1} + 2^{n-1}$ is divisible by 7	$= P(2 \leq 1.89) - 1 + P(2 \leq 2.83) \overline{Pable}$
for all integers hoo.	= 0.97062 - 1 + 0.99767
Prove that P(1) is true	=0.96829
$\therefore \text{ For } n=1, 3^{2h+1}+2^{h-1}=3^{3}+2^{0}$ $=28$	
Since 28 is divisible by 7,	
Since 20 is outside sg if	
P(1) is the.	-2.83 0 1.89

e)	
$\frac{1}{1}LHS = \frac{1-\cos 2\lambda}{\sin 2\lambda} + \frac{\sin 2\lambda}{1+\cos 2\lambda}$	
$[2] 1 - \cos^2 x + \sin^2 x - 2 \sin^2 x \cos x$	
$= \frac{\chi_{s'u}\chi_{cos}\chi_{cos}\chi_{cos}\chi_{cos}\chi_{cos}\chi_{cos}\chi_{cos}\chi_{cos}\chi_{cos}\chi_{cos}\chi_{cos}\chi_{cos}\chi_{cos}\chi_{cos}\chi_{cos}\chi_{cos}\chi_{cos}\chi_{cos}\chi_{cos}\chi_{cos}\chi_{cos}\chi_{cos}\chi_{cos}\chi_{cos}\chi_{cos}\chi_{cos}\chi_{cos}\chi_{cos}\chi_{cos}\chi_{cos}\chi_{cos}\chi_{cos}\chi_{cos}\chi_{cos}\chi_{cos}\chi_{cos}\chi_{cos}\chi_{cos}\chi_{cos}\chi_{cos}\chi_{cos}\chi_{cos}\chi_{cos}\chi_{cos}\chi_{cos}\chi_{cos}\chi_{cos}\chi_{cos}\chi_{cos}\chi_{cos}\chi_{cos}\chi_{cos}\chi_{cos}\chi_{cos}\chi_{cos}\chi_{cos}\chi_{cos}\chi_{cos}\chi_{cos}\chi_{cos}\chi_{cos}\chi_{cos}\chi_{cos}\chi_{cos}\chi_{cos}\chi_{cos}\chi_{cos}\chi_{cos}\chi_{cos}\chi_{cos}\chi_{cos}\chi_{cos}\chi_{cos}\chi_{cos}\chi_{cos}\chi_{cos}\chi_{cos}\chi_{cos}\chi_{cos}\chi_{cos}\chi_{cos}\chi_{cos}\chi_{cos}\chi_{cos}\chi_{cos}\chi_{cos}\chi_{cos}\chi_{cos}\chi_{cos}\chi_{cos}\chi_{cos}\chi_{cos}\chi_{cos}\chi_{cos}\chi_{cos}\chi_{cos}\chi_{cos}\chi_{cos}\chi_{cos}\chi_{cos}\chi_{cos}\chi_{cos}\chi_{cos}\chi_{cos}\chi_{cos}\chi_{cos}\chi_{cos}\chi_{cos}\chi_{cos}\chi_{cos}\chi_{cos}\chi_{cos}\chi_{cos}\chi_{cos}\chi_{cos}\chi_{cos}\chi_{cos}\chi_{cos}\chi_{cos}\chi_{cos}\chi_{cos}\chi_{cos}\chi_{cos}\chi_{cos}\chi_{cos}\chi_{cos}\chi_{cos}\chi_{cos}\chi_{cos}\chi_{cos}\chi_{cos}\chi_{cos}\chi_{cos}\chi_{cos}\chi_{cos}\chi_{cos}\chi_{cos}\chi_{cos}\chi_{cos}\chi_{cos}\chi_{cos}\chi_{cos}\chi_{cos}\chi_{cos}\chi_{cos}\chi_{cos}\chi_{cos}\chi_{cos}\chi_{cos}\chi_{cos}\chi_{cos}\chi_{cos}\chi_{cos}\chi_{cos}\chi_{cos}\chi_{cos}\chi_{cos}\chi_{cos}\chi_{cos}\chi_{cos}\chi_{cos}\chi_{cos}\chi_{cos}\chi_{cos}\chi_{cos}\chi_{cos}\chi_{cos}\chi_{cos}\chi_{cos}\chi_{cos}\chi_{cos}\chi_{cos}\chi_{cos}\chi_{cos}\chi_{cos}\chi_{cos}\chi_{cos}\chi_{cos}\chi_{cos}\chi_{cos}\chi_{cos}\chi_{cos}\chi_{cos}\chi_{cos}\chi_{cos}\chi_{cos}\chi_{cos}\chi_{cos}\chi_{cos}\chi_{cos}\chi_{cos}\chi_{cos}\chi_{cos}\chi_{cos}\chi_{cos}\chi_{cos}\chi_{cos}\chi_{cos}\chi_{cos}\chi_{cos}\chi_{cos}\chi_{cos}\chi_{cos}\chi_{cos}\chi_{cos}\chi_{cos}\chi_{cos}\chi_{cos}\chi_{cos}\chi_{cos}\chi_{cos}\chi_{cos}\chi_{cos}\chi_{cos}\chi_{cos}\chi_{cos}\chi_{cos}\chi_{cos}\chi_{cos}\chi_{cos}\chi_{cos}\chi_{cos}\chi_{cos}\chi_{cos}\chi_{cos}\chi_{cos}\chi_{cos}\chi_{cos}\chi_{cos}\chi_{cos}\chi_{cos}\chi_{cos}\chi_{cos}\chi_{cos}\chi_{cos}\chi_{cos}\chi_{cos}\chi_{cos}\chi_{cos}\chi_{cos}\chi_{cos}\chi_{cos}\chi_{cos}\chi_{cos}\chi_{cos}\chi_{cos}\chi_{cos}\chi_{cos}\chi_{cos}\chi_{cos}\chi_{cos}\chi_{cos}\chi_{cos}\chi_{cos}\chi_{cos}\chi_{cos}\chi_{cos}\chi_{cos}\chi_{cos}\chi_{cos}\chi_{cos}\chi_{cos}\chi_{cos}\chi_{cos}\chi_{cos}\chi_{cos}\chi_{cos}\chi_{cos}\chi_{cos}\chi_{cos}\chi_{cos}\chi_{cos}\chi_{cos}\chi_{cos}\chi_{cos}\chi_{cos}\chi_{cos}\chi_{cos}\chi_{cos}\chi_{cos}\chi_{cos}\chi_{cos}\chi_{cos}\chi_{cos}\chi_{cos}\chi_{cos}\chi_{cos}\chi_{cos}\chi_{cos}\chi_{cos}\chi_{$	
7 8 4 2 2 2 4 4 4 7	
$=\frac{2}{2\pi i \sqrt{2}} + \frac{2}{2\pi i$	
sinx directions t	
$\frac{-\frac{sih\chi}{cosx} + \frac{sih\chi}{cosx}}{\frac{sih\chi}{cosx}}$	
$= 2 \tan x$	
$\frac{(l)}{(l)} 2 \tan \frac{\Pi}{l2} = \frac{1 - \cos(2x\frac{\Pi}{l2})}{\sin(2x\frac{\Pi}{l2})} + \frac{\sin(2x\frac{\Pi}{l2})}{1 + \cos(2x\frac{\Pi}{l2})}$ $\frac{(l)}{(l)} = \frac{1 - \cos \frac{\Pi}{l2}}{\sin \frac{\Pi}{l2}} + \frac{\sin \frac{\Pi}{l2}}{1 + \cos \frac{\Pi}{l2}}$ $= \frac{1 - \frac{1}{2}}{\frac{1}{2}} + \frac{1}{2}$	
$\frac{1}{2} \frac{1}{2} \frac{1}$	
$\frac{1-\cos \theta}{1-\cos \theta} + \frac{\sin \theta}{1-\cos \theta}$	
5114 6 + co 54 6	
$= \frac{1 - \frac{1}{2}}{\frac{1}{2}} + \frac{\frac{1}{2}}{\frac{1}{2}}$	
$= 2 - 13 + \frac{2 - 13}{6 - 3}$	
= 4-213	
$\frac{-2}{12} = \frac{4 - 213}{2}$	
	· · · · · · · · · · · · · · · · · · ·
	1

	<i>ū</i> ί) [2]
1) P1=20+3980e-kt	Find the time when $P_2 = P_1$
$\begin{bmatrix} I \end{bmatrix} When = \begin{bmatrix} I & I \end{bmatrix} = \begin{bmatrix} I & I \end{bmatrix} = \begin{bmatrix} I & I \end{bmatrix}$	$\frac{500}{1+4e^{-0.254}} = 20+3980e^{-0.254}$
-: 3119=20+3980e-k	500 = 20 + 80 e-0.75 + 3980 e-0.15 + 15980 (-0.7)
-: e-k = 3119-20 / 14 3980	Farming quadratic :
$\frac{1}{16} = \frac{1}{16} \left( \frac{3099}{3580} \right)$	- 15720 (e-0.256) ² +4060 e ^{-0.256} -480=0
	$\frac{e^{-0.25t}}{2 \times 15520}$
-: k= 0.25	
: P, = 20 + 3980 e-0.25t	$-2 e^{-0.15 \pm -4000 \pm 6859.300}$
	sina e-0.25 70
$\frac{11}{3} \frac{df_2}{dt} = 0.0005F_2(500 - F_2)$	
	0.25t = 14 (0.0879,177)
$\frac{dt}{dP_2} = \frac{1}{0.0005P_2(500-P_3)}$	- t = 9.7254 yrars
$dt = \frac{1}{\sqrt{1 + 1}}$	P2 will exceed P, some time
$\frac{dt}{dP_2} = 4\left(\frac{1}{P_2} + \frac{1}{500 - P_2}\right) \left(\frac{1}{1}\right)$	in 2018.
$- t = 4 ( h  _{2}  -  h  _{500} - P_{2} )$	Students can also solve P2>P.
$= 4 \ln \left  \frac{P_2}{500 - P_2} \right  + C$	
$\frac{1}{500-P_2}$	
$\therefore \ln \left  \frac{P_2}{sou-P_2} \right  = \frac{1}{4} (t-C)$	
$\frac{= \frac{t}{c_1} - \frac{c}{c_2}}{\frac{P_2}{soo-P_2}} = e^{0.25t} \times e^{0.25c}$	
$\left \frac{1}{SOO-P_2}\right  = \mathcal{E} \times \mathcal{E}$	
$\frac{P_2}{P_2} = +e^{0.25C} \times e^{0.25t}$	
$\frac{P_2}{=S^{\circ} - P_2} = \pm e^{\circ \cdot 25C} \times e^{\circ \cdot 25t}$ $= A e^{\circ \cdot 25t} A = \pm e^{\circ \cdot 25C}$	
Finding A Subst t=0, P2=100	
Finding A: Subst $t=0$ , $P_2=100$ $\frac{100}{400} = A$ $\therefore A = \frac{1}{4}$ $\frac{100}{500-P_2} = \frac{0.25t}{4}$ $\therefore 4P_2 = 500e^{0.25t} - P_2 e^{0.25t}$	
$\frac{1}{500} \frac{1}{10} = \frac{1}{4}$	
$= 4P_2 = Sooe^{O_2St} - P_2 e^{O_2St}$	
$\therefore P_2(4+e^{\circ.\circ\epsilon}) = \frac{500}{p_2\circ.5\epsilon}$	
$\frac{1}{10000000000000000000000000000000000$	
500	
<u> </u>	

5)  
i) Let 
$$a = -gj$$
 Then:  $x = 0$  and  $y = -g$ ;  $V = 20$  m/s  
[4] Finding velocity: Finding C:  
 $v = -10tj + C$  when  $t = 0$ ,  $v = C$   
 $v = \int a dt$   
 $= \int -10j dt$  Also, intral velocity is  $v = 20ccs6i+20sibj$   
 $= -10tj + C$   $C = vcos6i + vsibj$   
 $\therefore v = -10tj + 20cos6i + 20sibj$ 

$$\frac{1}{10} \frac{1}{2} = \int \frac{1}{2} \frac{1}{2}$$

c) 
$$y = e^{ax} simbx$$
 let  $y = e^{ax}$ ,  $y = simbx$   
i) Then  $y = ae^{ax}$ ,  $y = bcosbx$   
 $= be^{ax}c_{0}s_{0}s_{0}c_{0}+ae^{ax}s_{0}h_{0}s_{0}x_{0}$   
 $= be^{ax}c_{0}s_{0}s_{0}c_{0}+ae^{ax}s_{0}h_{0}s_{0}x_{0}$   
 $= be^{ax}c_{0}s_{0}s_{0}c_{0}+ae^{ax}s_{0}h_{0}s_{0}x_{0}$   
Let  $y = ae^{ax}$ ,  $y = bcosbx + asimbx$   
Then  $y' = ae^{ax}$ ,  $y' = bcosbx + asimbx$   
Then  $y' = ae^{ax}$ ,  $y' = bcosbx + asimbx$   
To prove:  $y'' - 2ay' + (a^{2}+b^{2})y = D$   
 $= LHS = y'' - 2ay' + (a^{2}+b^{2})y$   
 $= e^{ax}(-b^{2}simbx + abcosbx + abcosbx + a^{2}simbx)$   
 $= e^{ax}(-b^{2}simbx + b^{2}simbx)$   
 $= e^{ax}(-b^{2}simbx + b^{2}simbx)$   
 $= e^{ax}(-b^{2}simbx + b^{2}simbx)$   
 $= e^{ax}(-b^{2}simbx + b^{2}simbx)$   
 $= e^{ax}(-b^{2}simbx + 2ascosbx + a^{2}simbx)$   
 $= e^{ax}x 0$   
 $= 0$   
 $= BHS$